If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2+7u+5=0
a = 1; b = 7; c = +5;
Δ = b2-4ac
Δ = 72-4·1·5
Δ = 29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{29}}{2*1}=\frac{-7-\sqrt{29}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{29}}{2*1}=\frac{-7+\sqrt{29}}{2} $
| 30-2n=4n+0 | | (w+64)/2= 2 | | 1.3=0.15x-3.2 | | 8y+14+6y-2=138 | | 13-11/2x=37 | | 3/7(x-12)=15 | | 1/5x+7x=12 | | n/37=2 | | -(1-2x)=2(x-5) | | -16+-2j=-40 | | x+23=3x+5.5 | | 0.2x+7x=12 | | 6000=450x+18000 | | 5+10^-x=6 | | 7-x=5x-7 | | 107=5u+12 | | 1/2x=91/4 | | 2x-10(x-4)=80 | | 82=6k-14 | | j+23=-23 | | x+23=6x+11 | | 5=n+5+2n | | 20=x/4-14 | | 12(1/2x-1/2)+4(x-1)=30 | | 10(u+2)=90 | | 4(4)-5=y | | 8k-30=34 | | n+n+7n=180 | | 0=1-n+4 | | l/6-3=11 | | 5z−4z+3=5−7 | | -4+9(x-3)=10(x-3) |